
Atredis Partners l Bene Diagnoscitur, Bene Curatur Confidential l For Intended Recipient Only

Prepared for Web3 Foundation
February 18, 2020 (version 1.0)

Atredis Partners www.atredis.com

Web3 Foundation
Polkadot Runtime Security
Assessment
Security Assessment Report

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 2

Table of Contents
Engagement Overview .. 3

Assessment Components and Objectives ... 3
Engagement Tasks .. 4

Source Code Analysis ... 4
Configuration and Architecture Review .. 4
Attack Simulation and Breach Modeling .. 4
Network Protocol Analysis .. 5
Status Reporting and Realtime Communication .. 5

Executive Summary .. 6
Key Conclusions ... 6
Findings Summary ... 7
Remediation Tasks ... 9

Platform Analysis ... 10
Network and Peer-to-Peer Layer ... 10
Substrate Status Gossip .. 11
Polkadot Blockchain & Runtime .. 11
RPC Server .. 12
JavaScript User Interface .. 12
Telemetry Server ... 12

Attack Scenarios ... 13
Transactional Integrity .. 13
Attacker Code Execution ... 14
Validator Disruption .. 15

Findings and Recommendations ... 20
Findings Summary ... 20
Findings Detail ... 20
Free Transaction Abuse via utility.batch Extrinsic .. 21
Polkadot Node CPU Exhaustion via Invalid Transactions ... 23
P2P Identity Response Observable Address DNS Leak ... 27
Substrate sr25519 Pair::Verify() Calls Deprecated Functions 28
Substrate from_seed_slice() Inconsistent Interface Warnings 31

Appendix I: Assessment Methodology .. 33
Appendix II: Engagement Team Biographies .. 36
Appendix III: About Atredis Partners ... 41

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 3

Engagement Overview
Assessment Components and Objectives
Web3 Foundation (“W3F”) recently engaged Atredis Partners (“Atredis”) to perform a platform
security assessment of the Polkadot Runtime. Objectives included validation that the Polkadot
Runtime implementation and supporting technologies could not be corrupted or disrupted by
a malicious network participant. A specific focus of this assessment was the security and
reliability of Polkadot nodes acting as Validators and running in a secure configuration with
Sentry nodes.

Testing was performed from January 20, 2020 through February 11th, 2020, by HD Moore,
Tom Steele, and Bryan C. Geraghty of the Atredis Partners team, with Joshua Vaughn
providing project management and delivery oversight. For Atredis Partners’ assessment
methodology, please see Appendix I of this document, and for team biographies, please see
Appendix II. Specific testing components and testing tasks are included below.

COMPONENT ENGAGEMENT TASKS
Web3 Foundation Polkadot Runtime Security Assessment
Polkadot Runtime Platform
Overview

• Enumerate and define key attack chains against the Polkadot
Runtime

• Attempt to identify scenarios that compromise Polkadot
transactional integrity

• Attempt to identify cases where attacker-supplied code
execution is possible

• Identify potential scenarios undermining auditability and
trustworthiness of Polkadot

• Confirm the Polkadot Runtime architecture, development, and
transactional functionality meets accepted cryptographic and
security best practices

• Attempt to disable or otherwise interfere with a Validator's
role on the network

• Attempt to determine the specific Validators selected for the
block production in a given transaction

• Attempt to force selection of a malicious Validator for a given
session

Reporting and Analysis
Analysis and Deliverables • Status Reporting and Realtime Communication

• Comprehensive Engagement Deliverable
• Engagement Outbrief and Remediation Review

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 4

Engagement Tasks
Atredis Partners performed the following tasks, at a high level, for in-scope targets during the
engagement.

Source Code Analysis
Atredis reviewed the in-scope application source code, with an eye for security-relevant
software defects. To aid in vulnerability discovery, application components were mapped out
and modeled until a thorough understanding of execution flow, code paths, and application
design and architecture were obtained.

Configuration and Architecture Review
Atredis Partners performed a high-level review of available documentation and source code
with an eye toward the overall functional design and soundness of the implementation. A key
aspect of this component was to identify gaps in the architecture and design regarding aspects
of design that reduce overall defensibility, aimed at pointing out fundamental issues in the
application architecture that should be addressed early in the development cycle as opposed
to later when the platform is closer to a full production state.

While specific vulnerabilities may have been identified during the architecture and
configuration review, the intent was less on finding individual defects and more on how the
design of a given target affects overall defensibility. Outcomes of the architecture review
helped inform testing objectives throughout the rest of the engagement while also helping
the client define a long-term platform maturity and security design roadmap.

Attack Simulation and Breach Modeling

Atredis engaged in controlled simulations of attacker behavior during this assessment, with
the objective of creating traffic and attack patterns that mirror typical approaches a malicious
threat actor might engage in.
In an attack simulation, tasks and objectives are typically exclusionary versus inclusionary.
This means that during the project, the engagement team collaborated with the client to
define a broad range of targets and objectives, with specific tasks (for example, denial-of-
service attacks or attacks on specific fragile systems) marked as off limits for testing, as
necessary. This approach allows the team to use the types of organic thought processes a
real threat actor would engage in, while still allowing the simulation to proceed in a controlled
manner with specific, measurable goals.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 5

Network Protocol Analysis

Atredis Partners reviewed network traffic using various packet flow analysis and packet
capture tools to observe in-scope network traffic with the objective of identifying scenarios
where the integrity of trusted communications could be diminished or reduced. Network
communications were analyzed for the presence of cleartext communications or scenarios
where the integrity of cryptographic communications could be diminished, and Atredis
attempted to identify means to bypass or circumvent network authentication or replay
communications, as well as other case-dependent means to abuse the environment to disrupt,
intercept, or otherwise negatively affect in-scope targets and communications.

Status Reporting and Realtime Communication
As described in the methodology section below, Atredis scheduled regular status meetings
with client representatives during the project and reported significant findings in realtime via
secure communication channels.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 6

Executive Summary
Atredis Partners performed a security assessment designed to address the confidentiality,
integrity, and availability of the Polkadot platform. A bottom-up analysis of the entire
communication stack of the platform, an analysis of Polkadot runtime source code, and
dynamic testing of the Kusama CC3 test network were conducted to complete engagement
tasks.

Testing was performed using a holistic approach by separating Polkadot into logical
approachable layers. The attack surface for each layer was enumerated and considered from
multiple roles, including both anonymous and authenticated users. A focus was placed on the
peer-to-peer, Substrate, and Polkadot layers. Under the direction of Web3, a large focus was
placed on Denial-of-Service (“DOS”) scenarios and fraudulent activity.

Atredis Partners was successful in testing many aspects of Polkadot. The Polkadot and
Substrate layers were a difficult target. In most cases, testing required Atredis Partners to
modify the source code of components in order to bypass validation routines within compiled
programs.

Key Conclusions
Overall, the Substrate and Polkadot layers were found to be free from traditional classes of
vulnerabilities and were difficult to disrupt or subvert via exploitation of injection, corruption,
and permissions issues. The use of Rust greatly reduced the likelihood of many classes of
attack. Rust is a programming language that is focused on safety above all else, while still
being high-performance. Its role in reducing the overall risk to the platform and users cannot
be understated, as the anonymous peer-to-peer interactions using traditionally less-safe
languages (such as C) could be catastrophic. Further, the use of a WASM runtime was effective
in sandboxing dynamic code, with no issues being found in the implementation.

A logic issue was identified in the Substrate layer that allows anonymous users to generate
zero-cost transactions. The platform is dependent on all transactions having a cost factor and
free transactions can be abused by an attacker to delay time-sensitive actions, such as voting.
A similar issue was identified and reported by a third-party during this assessment.
Integration tests may prevent this class of vulnerability in the future, but may be difficult to
implement given the complexity of the platform.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 7

As mentioned, dynamic testing was conducted using the Kusama network. The network
consisted of less than 1,000 participating nodes and several attacks were identified that
should not be possible with a larger network. For example, an attacker with modest resources
could initiate a Distributed Denial-of-Service (“DDOS”) attack to disable every node with a
public interface, as well as the bootstrap servers. Atredis Partners reviewed this attack
scenario with Web3, who expects the number of nodes to grow into the thousands and tens
of thousands in the near future, which would prevent generalized DDOS attacks.

This assessment did not include full cryptanalysis of algorithms and schemes used throughout
the platform. Atredis Partners performed a high-level review of critical functions in an attempt
to identify usability and implementation flaws. This review determined that the
implementations of ED25519 and SR25519 were entangled by a number of abstraction layers
that might cause protocol confusion or downgrade weaknesses. Substrate also contains
support for legacy Schnorrkel signatures and makes use of a signature validation function in
the ed25519-dalek that has known weaknesses. However, it is clear that the cryptographic
implementations in Polkadot have been given significant thought and there are already plans
to remediate some of the mentioned issues. Further testing of the cryptographic
implementation at all layers of Polkadot is recommended.

A large portion of testing was focused on disabling or otherwise interfering with validator
nodes. Atredis Partners approached this task at each layer of the technology stack, from the
network to the runtime. A combination of source code review, fuzzing, and dynamic testing
was used in an attempt to disrupt or disable a node. This identified several issues with the
Peer-to-Peer (“P2P”) layer. These attacks can be used to both directly attack a specific node
and cause a specific node to be blacklisted by its peers or the network operators. No attacks
were identified at the Polkadot layer that directly interfered with validator processing.

No issues were identified in validator selection. The Phragmen algorithm, offline-phragmen
simulation tool, and live network were reviewed to determine if validator selection was
predictable. Given the small number of validators in the current network and the frequency
of validator reuse, it was not clear if prediction was a requirement for attacks. Additional work
would be needed to determine if Phragmen selection is relevant to validator security. Given
the small number of total validators, it seems probable that directed attacks against trusted
validators and their sentry nodes could result in these validators being slashed, and malicious
validators being selected and used instead.

Findings Summary
In performing testing for this assessment, Atredis Partners identified one (1) critical, one
(1) high, one (1) medium, and three (3) informational findings. The singular critical
finding allows an attacker to flood the network with blocks without paying a transaction fee,
enabling numerous attacks against network operations. The other issues, while worth
investigating, could not be exploited to disrupt or subvert the network as a whole.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 8

Atredis defines vulnerability severity ranking as follows:

• Critical: These vulnerabilities expose systems and applications to immediate threat of
compromise by a dedicated or opportunistic attacker. With regards to the Polkadot
network, a Critical finding allows an attacker to directly interfere with the correct
functioning of the network.

• High: These vulnerabilities entail greater effort for attackers to exploit and may result
in successful network compromise within a relatively short time.

• Medium: These vulnerabilities may not lead to network compromise but could be
leveraged by attackers to attack other systems or applications components or be
chained together with multiple medium findings to constitute a successful compromise.

• Low: These vulnerabilities are largely concerned with improper disclosure of
information and should be resolved. They may provide attackers with important
information that could lead to additional attack vectors or lower the level of effort
necessary to exploit a system.

Info
3

Medium
1

High
1

Critical
1

Findings by Severity
Info

Low

Medium

High

Critical

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 9

Remediation Tasks
Remediation at the Polkadot and Substrate layers will involve initially resolving the findings
within this report, including the Critical severity flaw that could lead to free transactions.
These flaws can be resolved by modifying application logic at the source code level.

The CPU processing issues at the Polkadot Runtime level may be difficult to completely solve,
but reasonable limits could be implemented with regards to the number of erroneous
transmissions accepted by a given peer. This may require implementation of a peer reputation
system in order to reject disruptive nodes.

The two issues identified in the peer-to-peer layer can be resolved through smart filters in
the peer dialer and restrictions on the allowed observable address types. Peer dialer
restrictions would go a long way towards preventing forced interactions with private IP space,
cloud provider metadata services, or attempts to trigger blacklisting systems. Reasonable
limitations on the ports used by the peer-to-peer network would also prevent attacks against
common internet-exposed services, like the Secure Shell on port 22.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 10

Platform Analysis
The Polkadot platform builds on an extensive technology stack. After analysis, every
component of this stack was determined to be relevant to this security assessment. Each
component was analyzed as both a direct target and a component of a larger attack scenario.
This process began at the TCP/IP layer and ended with the JavaScript web interface.

Network and Peer-to-Peer Layer
TCP/IP
The lower layers of the platform rely on the Libp2p peer-to-peer protocol. This protocol was
originally designed to drive the Interplanetary Filesystem (“IPFS”) network. Libraries are
available for JavaScript (Node.js), Go, and Rust; the latter which is used by Polkadot and
Substrate.

Libp2p provides peer discovery and support for a mix of protocols that provide the base for a
functional peer-to-peer network. In practical terms, this process depends on a mix of nodes
connected via TCP/IP, some which are directly exposed to the Internet, while others operate
behind firewalls, and others interconnect from behind firewalls using a broker, such as
WebRTC. At the simplest level of interaction, every Polkadot node connects to the network
through TCP/IP, and has at least one, and sometimes many egress points that it depends on
for communication.

To facilitate discovery and enumeration of hosts connected to the Kusama network, Atredis
Partners built a Libp2p node crawler using the Go Libp2p library. The crawler connects to a
number of peers provided by the bootstrap server, queries its peers, and repeats this to
discover all nodes, their Peer IDs, and their advertised addresses. Executing the crawler
resulted in discovery of approximately 600 externally reachable IPv4 and IPv6 endpoints,
covering about 600 nodes in total, where approximately 350 were part of the Kusama network.
These 350 nodes were compared against the public Telemetry server to determine if there
were any gaps in visibility. Crawling the P2P network provided a much more comprehensive
view of the overall Polkadot network compared to Telemetry alone.

Multiplexer
The Libp2p protocol uses a multiplexer to manage concurrent streams over a single network
connection. This multiplexer implementation (yamux) is relatively simple and does not expose
any extraordinary surface for resource exhaustion attacks. Atredis Partners performed limited
fuzzing of this protocol and did not identify any scenarios where a remote attacker could
trigger a crash or other faulty condition.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 11

SECIO Layer
The SECIO protocol, accessed through the multiplexer, provides transport level privacy for
peer-to-peer connections, effectively functioning as TLS. The SECIO protocol exposes
primitives that could be abused for CPU exhaustion (signing and verification), but limited
fuzzing and use of malicious key data did not identify any scenarios where a remote attacker
could trigger a crash or other fault condition. Further, CPU exhaustion attacks against this
service were not sufficient to delay transaction processing of a Validator node.

Identify Protocol
The Identify protocol is used to announce a node’s addresses its peers and share the
observable address of the connecting peer. The Substrate/Polkadot implementation allows up
to 30 peer addresses to be advertised and for a wide variety of address types to be used.
Extensive testing was performed of possible address types (“multiaddresses”) to identify
viable attacks.

An analysis of this protocol discovered two ways it can be used by an attacker, the most
serious of which converts the entire P2P network into a persistent DDOS tool, while the second
provides a minor information leak.

Ping Protocol
The Ping protocol is a simple echo service. This protocol receives data, sends the same data
back, and closes the connection. This protocol can be used to exhaust the bandwidth of a
given peer, but limited fuzzing and did not identify any scenarios where a remote attacker
could trigger extensive CPU use, memory use, or a runtime panic.

KAD Protocol
The KAD protocol implements the Kademlia Distributed Hash Table (“DHT”), which is used to
discover and advertise nodes on the peer-to-peer network. This protocol was used to build a
working crawler but was not extensively tested on its own.

Substrate Status Gossip
The Substrate protocol handler is used to enable Polkadot blockchain communication over the
Status and Gossip protocols. These protocols are responsible for routing Polkadot network
data between peers in the network.

Polkadot Blockchain & Runtime
Polkadot nodes on the Kusama network expose asynchronous handlers for various sub-
components. The main sub-components handle submitted RPC requests, peer-to-peer traffic,
and internal transaction processing. Some of these facilities are encompassed by the Polkadot
Runtime which includes a WASM interpreter.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 12

In the current Kusama implementation, transactions are initiated through RPC requests to
nodes that have been configured to accept RPC requests. The receiving nodes perform basic
validation of the transactions, queue them into a local database, and redistributes them
amongst peers.

Elected validator nodes use the BABE protocol to decide which validators will be the authors
of the next block. The chosen authors validate transactions that have been stored in their
local database and produce a block from them. Validators use the GRANDPA process to
validate and finalize blocks into the blockchain.

RPC Server
Polkadot nodes expose a JSON-RPC interface that is used by both the JavaScript web interface
and separate programs to interface with the Polkadot network. This interface exposes a
WebSocket and HTTP interface to the RPC handler. Extensive testing of the RPC interface was
performed as part of the overall assessment process. This interface only accepts a limited
number of WebSocket connections and centralized, public nodes may be at risk to a denial-
of-service attack as a result.

JavaScript User Interface
The Polkadot JavaScript UI is offered as both a hosted option and a self-hosted mode. This
interface was lightly tested as part of the overall assessment process. This UI connects to the
RPC interface exposed by the Polkadot node.

Telemetry Server
Polkadot includes support for both public and non-public telemetry services. These services
provide visibility into a portion of the active Polkadot peers. The recommended configuration
for Validators is to not publish their information in a public Telemetry service. Light testing of
the telemetry UI and backend was performed as part of this assessment.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 13

Attack Scenarios
Atredis Partners performed the following attack scenarios, each of which is relevant to the
primary goals of this assessment. These scenarios and details are not comprehensive of all
testing performed but provide additional details on the assessment process and the level of
coverage applied to each component and goal.

As part of the testing process, Atredis Partners developed a number of customized tools and
proof-of-concepts that have been shared with Web3. The following tools were shared outside
of this document:

• polkadot-crawler.go
• polkadot-identity-spam-multi.go
• polkadot-identity-spam.go
• polkadot-substrate-pipe.go
• polkadot-sentry-prober.go
• polkadot-secio-spam.go
• polkadot-kad-spam.go
• scalefuzz
• libloader

In addition to these tools, versions of supporting libraries were provided with patches applied
to enable compatibility with the Polkadot network and to remove filtering from a malicious
Polkadot node. These patches cover the following libraries:

• go-libp2p
• go-libp2p-core
• go-libp2p-kad-dht
• go-libp2p-secio
• go-libp2p-swarm
• substrate (via substrate-patch.diff)

Transactional Integrity
Tests were designed to validate the integrity of transactions sent through the Polkadot
network. Testing was performed using RPC endpoints for ingress.

Invalid Transactions
General testing was performed using the Polkadot JavaScript API to create invalid transactions
containing invalid data. Additionally, dynamic testing tools were used for fuzzing through
WebSocket and HTTP interfaces as well as through customized Substrate clients.

Test Submit invalid transactions via Node RPC endpoint

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 14

Result Not Vulnerable

Details Invalid transactions are rejected by the RPC endpoint early in processing.
Atredis Partners performed dynamic testing, fuzzing, and source code review
of the RPC system and did not identify any flaws. This included fuzzing of the
SCALE serialization protocol. It is worth noting that the SCALE library also
contains extensive fuzzing coverage in the test suite.

Test Submit invalid transactions via modified node and broadcast across network

Result Partially Vulnerable

Details A custom node was built with validation logic removed and was used to
submit invalid and unpaid transactions to the network. This increased the
processing load of immediate peers, but these transactions were never
finalized into a block.

Free Transactions
The JavaScript API was used to enumerate and create transactions in an attempt to identify
those that did not require a fee due to logic flaws.

Test Submit valid unpaid transactions via node RPC endpoint

Result Vulnerable

Details Using the Polkadot source code, all FreeOperation transactions were
enumerated and then tested against the Kusama network. This testing
determined that the batch extrinsic could be used to flood the network with
unpaid transactions.

Attacker Code Execution
Polkadot executes dynamic code in a WASM Rust environment. Atredis Partners attempted to
design testing around this area, with the goal of executing malicious code on a node.

Code Placement
Atredis Partners attempted to replace code executing within the WASM runtime.

Test Submit valid transactions to replace code via node RPC endpoint

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 15

Result Partially Tested

Details Attempts to use the set_code and set_code_without_checks extrinsics failed
with Bad Origin. Source code review of these features was conducted, but
dynamic testing was limited. Successful execution of these features was tested
using a local node running in a development configuration.

Runtime Escape
Tests were designed to escape the WASM runtime using native calls.

Test Review runtime for the possibility of code execution through native calls

Result Partially Tested

Details Native call hooks were assessed, but the WASM runtime could use additional
scrutiny for potential escape and resource exhaustion attacks.

Validator Disruption
Tests were designed that could interview with a “Validator” node. Most tests were designed
to bring a node offline or otherwise cause a disruption in execution. The Libp2p layer served
a major focus.

P2P Connection Flooding Attacks
Tests were designed to interfere with the peer-to-peer layer.

Test Flood the P2P TCP Listener

Result Not Vulnerable

Details Sustained connection floods could prevent inbound connections, but did not
restrict outbound connections, which prevented a connection flood from
impacting network operations.

Test Flood the multiplexer protocol

Result Not Vulnerable

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 16

Details Repeated concurrent connections were initiated to a P2P endpoint in order to
place load on the multiplexer implementation. High CPU use was observed, but
this did not impact node processing.

Test Flood the SECIO protocol

Result Partially Vulnerable

Details Repeated concurrent connections were initiated to a P2P endpoint. High CPU
use was observed, and this slowed down processing slightly, but did not impact
network operations. Spot testing of the SECIO handler identified cases where
CPU exhaustion may be possible, but active testing could not confirm that this
was a viable attack.

Test Flood the Identify protocol

Result Partially Vulnerable

Details Repeated concurrent connections to the Identify protocol handler could
prevent new peers from being added by consuming all outbound dialer slots,
but even a freshly started node would obtain approximately 8 peers and be
able to participate in the network during an attack.

Test Flood the Ping protocol

Result Partially Vulnerable

Details Repeated concurrent connections to the Ping protocol handler could consume
bandwidth, but this had no noticeable impact on network participation.
Bandwidth consumption was symmetrical in that the attacker was required to
send and receive just as much as the victim.

Test Flood the DHT protocol

Result Untested

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 17

Details The KAD/DHT protocol was only lightly tested and additional analysis is
recommended.

Test Flood the Substrate protocol

Result Partially Tested

Details Slightly corrupted Substrate traffic was sent to a target peer, resulting in
excessive CPU usage, but this did not impact network participation. The use of
Protobuffs for deserialization minimized the attack surface at this layer.

Abuse the P2P Identity Protocol
These tests were designed to abuse the Identify protocol from Libp2p with a focus on
subverting the multiaddress definitions and behavior.

Test Send fraudulent addresses that reference Unix stream paths

Result Not Vulnerable

Details Multiaddress values were submitted to a Polkadot peer that specified Unix
stream paths. Unix stream multiaddresses were ignored by the current P2P
implementation.

Test Send fraudulent addresses that trigger attacks on third parties

Result Vulnerable

Details Multiaddress values were submitted to a Polkadot peer that referenced a third-
party host and service. This test confirmed that a malicious node can force a
Polkadot peer to make repeated connections to a third-party service. These
connections continued to be made hours after the initial connection was made.

Test Send fraudulent addresses that tie up available peer slots

Result Vulnerable

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 18

Details Multiaddress values were submitted that would result in connections in the
peer dialer timing out after an extended delay. This test demonstrated that an
attacker can limit peer connectivity of a node by filling all peer slots through
reconnecting and advertising multiple unreachable addresses. Although this
attack prevented new outbound connections from being established, it did not
result in the node being isolated from the network.

Test Send fraudulent addresses that drop the target reputation

Result Untested

Details Multiaddress values may be submitted that would cause a third-party to block
the target node’s addresses in a reputation database. Possible vectors
including Akamai, CloudFlare, and anti-spam databases such as Spamhaus.
Any future peer-based reputation system implemented in Polkadot should take
into account malicious multiaddresses advertised by an attacking peer.

Test Identify Protected Validators by DHT Crawling

Result Not Vulnerable

Details DHT crawling was used to enumerate all network nodes and try to identify
protected validators (those using--reserved-only). This test confirmed that
protected validators were not discoverable from DHT services on any identified
peer, including the sentry nodes that they use.

Test Identify Validator Sentry Nodes via P2P Queries

Result Partially Vulnerable

Details DHT queries against sentry nodes do not disclose peers and this can enable
Sentry node discovery, but it is not conclusive proof of Sentry node status.
Additional analysis of Sentry node P2P behavior is recommended.

Test Predict Validation Selection

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 19

Result Untested

Details A cursory review of the Phragmen algorithm, the offline-phragmen tool, and
the observation of the Polkadot network was performed. It was not clear
whether validator prediction would significantly impact attacks intent on forced
validator selection.

Test Forced Validator Selection

Result Partially Tested

Details Attempts to cause forced validator selection by performing Denial-of-Service
attacks against the network were unsuccessful. Network-level attacks had
limited effect, and malicious node modifications proved to be unstable at scale.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 20

Findings and Recommendations
The following section outlines findings identified via manual and automated testing over the
course of this engagement. Where necessary, specific artifacts to validate or replicate issues
are included, as well as Atredis Partners’ views on finding severity and recommended
remediation.

Findings Summary
The below tables summarize the number and severity of the unique issues identified
throughout the engagement.

CRITICAL HIGH MEDIUM LOW INFO
1 1 1 0 3

Findings Detail
FINDING NAME SEVERITY
Free Transaction Abuse via utility.batch Extrinsic Critical
Polkadot Node CPU Exhaustion via Invalid Transactions High
P2P Identity Response Peer Addresses Traffic Reflection Medium
P2P Identity Response Observable Address DNS Leak Info
Substrate sr25519 Pair::Verify() Calls Deprecated Functions Info
Substrate from_seed_slice() Inconsistent Interface Warnings Info

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 21

Free Transaction Abuse via utility.batch Extrinsic
Severity: Critical
Finding Overview
The utility.batch extrinsic allows transactions to be submitted without a transaction fee.
This can be abused by an attacker to flood the network with useless blocks and delay normal
operations.

Finding Detail
The utility.batch extrinsic, when submitted with empty arguments, or another
utility.batch extrinsic as the argument, will be processed even when the sending account
has a zero balance. This can be abused to quickly consume blocks on the network with free
transactions. An attacker can use this to introduce processing delays and consume storage
across the network, which may impact time-sensitive actions such as voting.

const { ApiPromise, WsProvider } = require('@polkadot/api');
const {
 Keyring
} = require('@polkadot/keyring');
async function main () {
 const provider = new WsProvider('ws://host:port');
 const api = await ApiPromise.create({ provider });
 const keyring = new Keyring({
 type: 'sr25519'
 });
 const alice = keyring.addFromUri("//Alice");
 api.tx.utility.batch([])
 .signAndSend(alice, ({ events = [], status }) => {
 console.log('Proposal status:', status.type);
 if (status.isFinalized) {
 console.error('You have just upgraded your chain');
 console.log('Completed at block hash', status.asFinalized.toHex());
 console.log('Events:');
 events.forEach(({ phase, event: { data, method, section } }) => {
 console.log('\t', phase.toString(), `: ${section}.${method}`, data.toString());
 });
 process.exit(0);
 }
 });
}
main().catch((error) => {
 console.error(error);
 process.exit(-1);
});

Code Snippet to Submit a utility.batch Request via JSON-RPC

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 22

Screenshot from Polkascan of the Free Transaction (paysFee:false)

Recommendation(s)
The Polkadot Runtime should reject utility.batch extrinsics when submitted with empty
parameters or parameters that only include other free operations.

References
Polkascan reference to a free transaction created through the utility.batch extrinsic:
https://polkascan.io/pre/kusama/event/1002557-5

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 23

Polkadot Node CPU Exhaustion via Invalid Transactions
Severity: High
Finding Overview
A Polkadot node that broadcasts invalid transactions can consume substantial amounts of
processing time on the peers without incurring any of its own. This can be used by an attacker
to slow down specific nodes connected via the peer-to-peer network.

Finding Detail
The Polkadot node implementation applies substantial validation to transactions submitted via
the RPC endpoint. This prevents invalid transactions from being casually introduced to the
network but does not protect against a rogue node that intentionally broadcasts invalid
transactions to connected peers. Atredis Partners determined that it is possible to cause a
Denial-of-Service condition on peers that are connected to a malicious node. This attack was
performed by patching the Substrate library in order to bypass validation checks and then
initiating an RPC transaction through the patched client.

Specifically, when the check requiring sufficient funding for a transaction is bypassed,
transactions are sent to peers for validation even though the fee has not been paid. The
validation fails at the peers, but the extra workload causes a higher than normal level of
processing for the peer. Additionally, when the checks that limit retransmissions are removed,
the client goes into a retransmission loop that causes the effect to be multiplied.

When Atredis Partners sent 1000 insufficiently funded transfer RPC requests through the
patched node, it overloaded the Polkadot processes on all connected peers for about 10
minutes. This attack took approximately 30 seconds to execute.

Polkadot Process Consuming 115% CPU on a Connected Peer

The following code snippet was used to perform the attack through a patched Polkadot node.
A patch has been provided to Web3 outside of this document.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 24

const bcg6 = "FFrksmATLR5M2uKFuPF6PBZjYqNWez5XPWTcMdBzhjATCzL";
const alice = keyring.addFromUri("//Alice");

for (x = 0; x <= 1000; x++) {
 var a = await api.tx.balances.transfer(bcg6, "1").signAndSend(alice);
 console.log("a: " + a);
}

Denial-of-Service Attack Proof-of-Concept

Recommendation(s)
Polkadot nodes should implement efficient methods to detect and reject invalid transactions
broadcast by malicious peers.

References
See the referenced substrate-patch.diff for modifications that were made to the Polkadot
node implementation.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 25

P2P Identity Response Peer Addresses Traffic Reflection
Severity: Medium
Finding Overview
The Polkadot node libp2p Identity protocol implementation will ask a connecting peer for a
list of its addresses, adding those addresses to the outbound peer dialer. An attacker can
abuse this functionality to force one or more peers to repeatedly connect to a third-party
address, resulting in a sustained attack sourced from a Polkadot node.

Finding Detail
The libp2p Identity protocols works by waiting for a peer to connect and then sending a
response that contains a list of the node’s addresses, in the “multiaddress” format, as well as
the observed address of the connecting peer.

The Polkadot node implementation will process up to 30 peer addresses in response to the
identity request, adding these addresses to the outbound peer-to-peer dialer. A malicious
peer-to-peer node can force another peer to make repeated requests to arbitrary hosts and
ports using various different protocols. The peer dialer is aggressive and will repeatedly
reconnect to the supplied addresses before eventually timing out. In one example, a single
connection to a Polkadot peer resulted in sustained TCP connections to a third-party SSH
service for over four hours. By default, the peer dialer will also connect to private IP space,
cloud metadata services, and service ports reserved for important applications. Combined,
these make the peer dialer a weak spot in the security of the Polkadot network.

An attacker that connects to multiple peers and makes multiple connections can use the peer-
to-peer network as Distributed Denial-of-Service (“DDOS”) source, overwhelming a victim
service. This attack can also be used to force third parties to ban or otherwise blacklist a
Polkadot peer, which in turn may impact the functionality of the node.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 26

w := ggio.NewDelimitedWriter(s)
mes := pb.Identify{}

la, err := multiaddr.NewMultiaddr(i.Victim)
if err != nil {
 log.Printf("invalid address: %s", err)
 return
}
oa, err := multiaddr.NewMultiaddr("/ip4/127.0.0.1/tcp/9199")
if err != nil {
 log.Printf("invalid observable: %s", err)
 return
}

pk := s.Conn().LocalPrivateKey().GetPublic()
pkb, err := pk.Bytes()
if err != nil {
 log.Printf("failed to get pubkey: %s", err)
 return
}

ua := "substrate/1.0"
av := CrawlerUserAgent
mes.AgentVersion = &av
mes.ProtocolVersion = &ua
mes.ListenAddrs = [][]byte{la.Bytes()}
mes.ObservedAddr = oa.Bytes()
mes.PublicKey = pkb
w.WriteMsg(&mes)

 Excerpt from the polkadot-idenity-spam-multi.go Demonstration Tool

Recommendation(s)
Polkadot nodes should limit the number of peer addresses they connect to, reduce retries on
failed connections, restrict port ranges attempted, prevent access to sensitive or private IP
ranges not explicitly whitelisted, and have a mechanism to ignore peers that repeatedly
provide invalid addresses.

References
Identity Protocol Implementation:
https://github.com/libp2p/rust-libp2p/blob/master/protocols/identify/src/identify.rs

Parity MultiAddress Implementation:
https://github.com/libp2p/rust-libp2p/blob/master/misc/multiaddr/src/protocol.rs

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 27

P2P Identity Response Observable Address DNS Leak
Severity: Info
Finding Overview
The Polkadot node libp2p Identity protocol implementation will send the connecting peer the
address it sees the connection from, known as the Observable Address, and the peer will
record this as a new potential external address to share with future peers. This address can
be provided in the dns4 and dns6 formats, which is a non-standard for the Observable Address,
is a valid “multiaddress”, and causes the connecting peer to resolve the supplied hostname.
This can in turn leak the upstream DNS servers of the peer back to an attacker, providing
information about its DNS configuration.

Finding Detail
The libp2p Identity protocols Observable Address field is normally provided as an ip4 or ip6
multiaddress. In the case of a dns4 or dns6 address being received instead, the connecting
peer will try to resolve this name using the system’s DNS settings. This is a minor information
leak, as the attacker can supply names that point to a DNS server they control and identify
the upstream DNS infrastructure of the connecting peer.

Recommendation(s)
The Polkadot node should whitelist the multiaddress types that it accepts in the Observable
Address field of the Identity reply.

References
Identity Protocol Implementation:
https://github.com/libp2p/rust-libp2p/blob/master/protocols/identify/src/identify.rs

Parity MultiAddress Implementation:
https://github.com/libp2p/rust-libp2p/blob/master/misc/multiaddr/src/protocol.rs

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 28

Substrate sr25519 Pair::Verify() Calls Deprecated Functions
Severity: Info
Finding Overview
The Pair::Verify() routine calls deprecated functions in the Schnorrkel library that may
substantially reduce the security of the signature verification process.

Finding Detail
A key function used to verify message signatures, Pair::Verify() leverages deprecated
functions in the Schnorrkel library that have been annotated with security warnings.
Specifically, the verify_simple_preaudit_deprecated function is called, which is described
in the comments as, “A temporary verification routine for use in transitioning substrate
testnets only.”

This function tries to convert the supplied message into a Signature object and then use the
current verify() function to validate the message signature. However, if the conversion fails,
it falls back to an older signature validation process. This issue could potentially result in a
protocol confusion or downgrade attack. Atredis Partners did not build a proof-of-concept
attack for this issue, so it is being included as informational.

This code is present in the file substrate/primitives/core/src/sr25519.rs:

532 /// Verify a signature on a message. Returns true if the signature is good.
533 fn verify<M: AsRef<[u8]>>(sig: &Self::Signature, message: M, pubkey: &Self::Public)
-> bool {
534 Self::verify_weak(&sig.0[..], message, pubkey)
535 }
536
537 /// Verify a signature on a message. Returns true if the signature is good.
538 fn verify_weak<P: AsRef<[u8]>, M: AsRef<[u8]>>(sig: &[u8], message: M, pubkey: P) -
> bool {
539 // Match both schnorrkel 0.1.1 and 0.8.0+ signatures, supporting both wallets
540 // that have not been upgraded and those that have. To swap to 0.8.0 only,
541 // create `schnorrkel::Signature` and pass that into `verify_simple`
542 match PublicKey::from_bytes(pubkey.as_ref()) {
543 Ok(pk) => pk.verify_simple_preaudit_deprecated(
544 SIGNING_CTX, message.as_ref(), &sig,
545).is_ok(),
546 Err(_) => false,
547 }
548 }

The verify() -> verify_weak() -> verify_simple_preaudit_deprecated() Chain

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 29

This code path continues in schnorrkel/src/sign.rs:

229 /// A temporary verification routine for use in transitioning substrate testnets
only.
230 #[cfg(feature = "preaudit_deprecated")]
231 #[allow(non_snake_case)]
232 pub fn verify_simple_preaudit_deprecated(&self, ctx: &'static [u8], msg: &[u8],
sig: &[u8])
233 -> SignatureResult<()>
234 {
235 let t = SigningContext::new(ctx).bytes(msg);
236
237 if let Ok(signature) = Signature::from_bytes(sig) {
238 return self.verify(t,&signature);
239 }
240
241 let signature = Signature::from_bytes_not_distinguished_from_ed25519(sig) ?;
242
243 let mut t = merlin::Transcript::new(ctx);
244 t.append_message(b"sign-bytes", msg);
245
246 let A: &RistrettoPoint = self.as_point();
247
248 t.proto_name(b"Schnorr-sig");
249 t.commit_point(b"pk",self.as_compressed());
250 t.commit_point(b"no",&signature.R);
251
252 let k: Scalar = t.challenge_scalar(b""); // context, message, A/public_key,
R=rG
253 let R = RistrettoPoint::vartime_double_scalar_mul_basepoint(&k, &(-A),
&signature.s);
254
255 if R.compress() == signature.R { Ok(()) } else {
Err(SignatureError::EquationFalse) }
256 }

The verify_simple_preaudit_deprecated() ->
from_bytes_not_distinguished_from_ed25519() Chain

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 30

135 /// Depricated construction of a `Signature` from a slice of bytes
136 /// without checking the bit distinguishing from ed25519. Deprecated.
137 #[inline]
138 pub fn from_bytes_not_distinguished_from_ed25519(bytes: &[u8]) ->
SignatureResult<Signature> {
139 if bytes.len() != SIGNATURE_LENGTH {
140 return Err(SignatureError::BytesLengthError {
141 name: "Signature",
142 description: Signature::DESCRIPTION,
143 length: SIGNATURE_LENGTH
144 });

145 }
146 let mut bytes0: [u8; SIGNATURE_LENGTH] = [0u8; SIGNATURE_LENGTH];
147 bytes0.copy_from_slice(bytes);
148 bytes0[63] |= 128;
149 Signature::from_bytes(&bytes0[..])

The from_bytes_not_distinguished_from_ed25519() function in the Schnorrkel
library is labelled as deprecated

Recommendation(s)
The Polkadot node implementation should switch to a stable and secure signature validation
function that does not switch signature modes based on a bit of the signature data.

References
Substrate/Polkadot Schnorrkel Wrapper:
https://github.com/paritytech/substrate/blob/polkadot-
master/primitives/core/src/sr25519.rs

Schnorrkel Library:
https://github.com/w3f/schnorrkel/blob/master/src/sign.rs

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 31

Substrate from_seed_slice() Inconsistent Interface Warnings
Severity: Info
Finding Overview
The function from_seed_slice() uses inconsistent warning messages in application source
code.

Finding Detail
While reviewing source code, Atredis Partners identified that the from_seed_slice() functions
that are defined in the ed25519::Pair and sr25519::Pair implementations in Substrate
contain warnings about their use. Specifically, the comments warn, “You should never need
to use this; generate(), generate_with_phrase(), from_phrase()”. However, the high-level
Pair trait has no such warnings. Ultimately, the impact of this issue is that keys that are
recovered from passphrases may not be created in the expected manner.

The code snippet below shows the definition for the Pair trait without the warning on the
from_seed_slice() function.

 692 /// Trait suitable for typical cryptographic PKI key pair type.
 693 ///
 694 /// For now it just specifies how to create a key from a phrase and derivation path.
 695 #[cfg(feature = "full_crypto")]
 696 pub trait Pair: CryptoType + Sized + Clone + Send + Sync + 'static {
 -
 747 /// Make a new key pair from secret seed material. The slice must be the correct size or
 748 /// it will return `None`.
 749 ///
 750 /// @WARNING: THIS WILL ONLY BE SECURE IF THE `seed` IS SECURE. If it can be guessed
 751 /// by an attacker then they can also derive your key.
 752 fn from_seed_slice(seed: &[u8]) -> Result<Self, SecretStringError>;

primitives/core/src/crypto.rs

The following code snippets show the definitions of the function in the ed25519::Pair and
sr25519::Pair implementations, with the warnings in the comments.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 32

462 /// Make a new key pair from secret seed material. The slice must be 32 bytes long or it
463 /// will return `None`.
464 ///
465 /// You should never need to use this; generate(), generate_with_phrase(), from_phrase()
466 fn from_seed_slice(seed: &[u8]) -> Result<Pair, SecretStringError> {
467 match seed.len() {
468 MINI_SECRET_KEY_LENGTH => {
469 Ok(Pair(
470 MiniSecretKey::from_bytes(seed)
471 .map_err(|_| SecretStringError::InvalidSeed)?
472 .expand_to_keypair(ExpansionMode::Ed25519)
473))
474 }
475 SECRET_KEY_LENGTH => {
476 Ok(Pair(
477 SecretKey::from_bytes(seed)
478 .map_err(|_| SecretStringError::InvalidSeed)?
479 .to_keypair()
480))
481 }
482 _ => Err(SecretStringError::InvalidSeedLength)
483 }
484 }

primitives/core/src/sr25519.rs

441 /// Make a new key pair from secret seed material. The slice must be 32 bytes long or it
442 /// will return `None`.
443 ///
444 /// You should never need to use this; generate(), generate_with_phrase
445 fn from_seed_slice(seed_slice: &[u8]) -> Result<Pair, SecretStringError> {
446 let secret = ed25519_dalek::SecretKey::from_bytes(seed_slice)
447 .map_err(|_| SecretStringError::InvalidSeedLength)?;
448 let public = ed25519_dalek::PublicKey::from(&secret);
449 Ok(Pair(ed25519_dalek::Keypair { secret, public }))
450 }

primitives/core/src/ed25519.rs

Recommendation(s)
This function seems to be primarily used in test cases. If there are no other valid uses for it,
this function should be moved to a test harness.

References
Substrate/Polkadot Encryption Primitives:
https://github.com/paritytech/substrate/blob/polkadot-master/primitives/core/src/crypto.rs

Substrate/Polkadot Schnorrkel Wrapper:
https://github.com/paritytech/substrate/blob/polkadot-
master/primitives/core/src/sr25519.rs

Substrate/Polkadot ED25519-DALEK Wrapper:
https://github.com/paritytech/substrate/blob/polkadot-
master/primitives/core/src/ed25519.rs

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 33

Appendix I: Assessment Methodology
Atredis Partners draws on our extensive experience in penetration
testing, reverse engineering, hardware/software exploitation, and
embedded systems design to tailor each assessment to the specific
targets, attacker profile, and threat scenarios relevant to our
client’s business drivers and agreed upon rules of engagement.

Where applicable, we also draw on and reference specific industry
best practices, regulations, and principles of sound systems and
software design to help our clients improve their products while simultaneously making them
more stable and secure.

Our team takes guidance from industry-wide standards and practices such as the National
Institute of Standards and Technology’s (NIST) Special Publications, the Open Web
Application Security Project (OWASP), and the Center for Internet Security (CIS).

Throughout the engagement, we communicate findings as they are identified and validated,
and schedule ongoing engagement meetings and touchpoints, keeping our process open and
transparent and working closely with our clients to focus testing efforts where they provide
the most value.

In most engagements, our primary focus is on creating purpose-built test suites and
toolchains to evaluate the target, but we do utilize off-the-shelf tools where applicable as well,
both for general patch audit and best practice validation as well as to ensure a comprehensive
and consistent baseline is obtained.

Research and Profiling Phase
Our research-driven approach to testing begins with a detailed examination of the target,
where we model the behavior of the application, network, and software components in their
default state. We map out hosts and network services, patch levels, and application versions.
We frequently use a number of private and public data sources to collect Open Source
Intelligence about the target and collaborate with client personnel to further inform our testing
objectives.

For network and web application assessments, we perform network and host discovery as
well as map out all available application interfaces and inputs. For hardware assessments, we
study the design and implementation, down to a circuit-debugging level. In reviewing source
code or compiled application code, we map out application flow and call trees and develop a
solid working understand of how the application behaves, thus helping focus our validation
and testing efforts on areas where vulnerabilities might have the highest impact to the
application’s security or integrity.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 34

Analysis and Instrumentation Phase

Once we have developed a thorough understanding of the target, we use a number of
specialized and custom-developed tools to perform vulnerability discovery as well as binary,
protocol, and runtime analysis, frequently creating engagement-specific software tools which
we share with our clients at the close of any engagement.

We identify and implement means to monitor and instrument the behavior of the target,
utilizing debugging, decompilation and runtime analysis, as well as making use of memory
and filesystem forensics analysis to create a comprehensive attack modeling testbed. Where
they exist, we also use common off-the-shelf, open-source and any extant vendor-proprietary
tools to aid in testing and evaluation.

Validation and Attack Phase

Using our understanding of the target, our team creates a series of highly-specific attack and
fault injection test cases and scenarios. Our selection of test cases and testing viewpoints are
based on our understanding of which approaches are most relevant to the target and will gain
results in the most efficient manner, and built in collaboration with our client during the
engagement.

Once our test cases are validated and specific attacks are confirmed, we create proof-of-
concept artifacts and pursue confirmed attacks to identify extent of potential damage, risk to
the environment, and reliability of each attack scenario. We also gather all the necessary data
to confirm vulnerabilities identified and work to identify and document specific root causes
and all relevant instances in software, hardware, or firmware where a given issue exists.

Education and Evidentiary Phase

At the conclusion of active testing, our team gathers all raw data, relevant custom toolchains,
and applicable testing artifacts, parses and normalizes these results, and presents an initial
findings brief to our clients, so that remediation can begin while a more formal document is
created. Additionally, our team shares confirmed high-risk findings throughout the
engagement so that our clients may begin to address any critical issues as soon as they are
identified.

After the outbrief and initial findings review, we develop a detailed research deliverable report
that provides not only our findings and recommendations but also an open and transparent
narrative about our testing process, observations and specific challenges in developing attacks
against our targets, from the real world perspective of a skilled, motivated attacker.

Automation and Off-The-Shelf Tools

Where applicable or useful, our team does utilize licensed and open-source software to aid us
throughout the evaluation process. These tools and their output are considered secondary to

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 35

manual human analysis, but nonetheless provide a valuable secondary source of data, after
careful validation and reduction of false positives.

For runtime analysis and debugging, we rely extensively on Hopper, IDA Pro and Hex-Rays,
as well as platform-specific runtime debuggers, and develop fuzzing, memory analysis, and
other testing tools primarily in Ruby and Python.

In source auditing, we typically work in Visual Studio, Xcode and Eclipse IDE, as well as other
markup tools. For automated source code analysis we will typically use the most appropriate
toolchain for the target, unless client preference dictates another tool.

Network discovery and exploitation make use of Nessus, Metasploit, and other open-source
scanning tools, again deferring to client preference where applicable. Web application runtime
analysis relies extensively on the Burp Suite, Fuzzer and Scanner, as well as purpose-built
automation tools built in Go, Ruby and Python.

Engagement Deliverables

Atredis Partners deliverables include a detailed overview of testing steps and testing dates,
as well as our understanding of the specific risk profile developed from performing the
objectives of the given engagement.

In the engagement summary we focus on “big picture” recommendations and a high-level
overview of shared attributes of vulnerabilities identified and organizational-level
recommendations that might address these findings.

In the findings section of the document, we provide detailed information about vulnerabilities
identified, provide relevant steps and proof-of-concept code to replicate these findings, and
our recommended approach to remediate the issues, developing these recommendations
collaboratively with our clients before finalization of the document.

Our team typically makes use of both DREAD and NIST CVE for risk scoring and naming, but
as part of our charter as a client-driven and collaborative consultancy, we can vary our scoring
model to a given client’s preferred risk model, and in many cases will create our findings using
the client’s internal findings templates, if requested.

Sample deliverables can be provided upon request, but due to the highly specific and
confidential nature of Atredis Partners’ work, these deliverables will be heavily sanitized, and
give only a very general sense of the document structure.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 36

Appendix II: Engagement Team Biographies
Shawn Moyer, Founding Partner and CEO
Shawn Moyer scopes, plans, and coordinates security research and consulting projects for the
Atredis Partners team, including reverse engineering, binary analysis, advanced penetration
testing, and private vulnerability research. As CEO, Shawn works with the Atredis leadership
team to build and grow the Atredis culture, making Atredis Partners a home for some of the
best minds in information security, and ensuring Atredis continues to deliver research and
consulting services that exceed our client’s expectations.

Experience
Shawn brings over 25 years of experience in information security, with an extensive
background in penetration testing, advanced security research including extensive work in
mobile and Smart Grid security, as well as advanced threat modeling and embedded reverse
engineering.

Shawn has served as a team lead and consultant in enterprise security for numerous large
initiatives in the financial sector and the federal government, including IBM Internet Security
Systems’ X-Force, MasterCard, a large Federal agency, and Wells Fargo Securities, all focusing
on emerging network and application attacks and defenses.

In 2010, Shawn created Accuvant Labs’ Applied Research practice, delivering advanced
research-driven consulting to numerous clients on mobile platforms, critical infrastructure,
medical devices and countless other targets, growing the practice 1800% in its first year.

Prior to Accuvant, Shawn helped develop FishNet Security’s penetration testing team as a
principal security consultant, growing red team offerings and advanced penetration testing
services, while being twice selected as a consulting MVP.

Key Accomplishments
Shawn has written on emerging threats and other topics for Information Security Magazine
and ZDNet, and his research has been featured in the Washington Post, BusinessWeek, NPR
and the New York Times. Shawn is a twelve-time speaker at the Black Hat Briefings and has
been an invited speaker at other notable security conferences around the world.

Shawn is likely best known for delivering the first public research on social network security,
pointing out much of the threat landscape still exists on social network platforms today.
Shawn also co-authored an analysis of the state of the art in web browser exploit mitigation,
creating the first in-depth comparison of browser security models along with Dr. Charlie Miller,
Chris Valasek, Ryan Smith, Joshua Drake, and Paul Mehta.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 37

Shawn studied Computer and Network Information Systems at Missouri University and the
University of Louisiana at Lafayette, holds numerous information security certifications, and
has been a frequent presenter at national and international security industry conferences.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 38

HD Moore, VP, Research and Development
HD leads and contributes to custom-scoped projects for Atredis Partners that include
advanced penetration testing, binary analysis, software development, and applied research.
In addition to his work at Atredis Partners, HD is a board member at Hack/Secure and an
independent advisor for exceptional startups building security solutions. Prior to joining
Atredis Partners, HD served as Chief Research Officer at Rapid7, a provider of security data
and analytics solutions.

Experience
HD has spent the last 20 years hacking into networks, auditing software, writing exploits,
developing teams, and building products, with leadership roles at Digital Defense,
BreakingPoint Systems, and Rapid7.

Key Accomplishments
HD is best known as the founder of the Metasploit Project, the foremost open source exploit
development framework. Metasploit was acquired by Rapid7 in 2009 and HD built out the
commercial Metasploit product line. In addition to his work on Metasploit, HD is a prolific
researcher and has been a frequent speaker at security events. For a sampling of his work,
please see his website at https://hdm.io/.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 39

Tom Steele, Research Consulting Director
Tom Steele leads and executes application security assessments and adversarial
engagements, ranging from source code review to advanced red team assessments.

Experience
Tom has over eight years of professional experience in information security. During that time,
his focus has been on executing and innovating both network and application level
assessments; with a focus on developing new techniques, tools, and processes that improve
collaborative testing, coverage, deterrent bypass, and data exfiltration.

In addition to performing assessments, Tom is also a seasoned software developer, and has
an expert knowledge of multiple languages and platforms including Go and Node.js. Tom
understands how applications fit together and has used his development experience to
develop and maintain many widely used open-source and proprietary tools including Lair, a
real-time testing collaboration application, and BurpBuddy, an API for BurpSuite Pro.

Prior to joining Atredis, Tom was a practice manager on Optiv’s Attack and Penetration team,
where he led a team of consultants, developed and enhanced methodologies, toolsets, and
processes, and conducted hundreds of security assessments.

Key Accomplishments
Tom is a contributor to the Node Security Project, where he has assisted with the identification
and remediation of many vulnerabilities; both in Node core and in widely deployed libraries.
He has consulted leaders working at Fortune 500 companies on how to increase the security
of their application frameworks. He has presented and lead training at several conferences
including Black Hat, DEF CON, BSides, and DerbyCon and is the Co-Author of No Starch Press'
"Black Hat Go".

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 40

Bryan C. Geraghty, Senior Research Consultant
Bryan leads and executes highly technical application and network security assessments, as
well as adversarial simulation assessments. He specializes in cryptography and reverse
engineering.

Experience
Bryan has over 20 years of experience building and exploiting networks, software, and
hardware systems. His deep background in systems administration, software development,
and cryptography has been demonstrably beneficial for security assessments of custom or
unique applications in industries such as healthcare, manufacturing, marketing, banking,
utilities, and entertainment.

Key Accomplishments
Bryan is a creator and maintainer of several open-source security tools. He is also a nationally
recognized speaker; often presenting research on topics such as software, hardware, and
communications protocol attacks, and participating in offense-oriented panel discussions.
Bryan is also an organizing-board member of multiple Kansas City security events, and a staff
volunteer & organizer of official events at DEF CON.

Atredis Partners – Web3 Foundation Polkadot Runtime Security Assessment Report

Atredis Partners l Confidential Page 41

Appendix III: About Atredis Partners
Atredis Partners was created in 2013 by a team of security industry veterans who wanted to
prioritize offering quality and client needs over the pressure to grow rapidly at the expense
of delivery and execution. We wanted to build something better, for the long haul.

In five years, Atredis Partners has doubled in size annually, and has been twice named to the
Saint Louis Business Journal’s “Fifty Fastest Growing Companies” and “Ten Fastest Growing
Tech Companies”. In 2018, Atredis Partners joined the ranks of the Inc. 5,000 list of fastest
growing private companies in the United States.

The Atredis team is made up of some of the greatest minds in Information Security research
and penetration testing, and we’ve built our business on a reputation for delivering deeper,
more advanced assessments than any other firm in our industry.

Atredis Partners team members have presented research over forty times at the BlackHat
Briefings conference in Europe, Japan, and the United States, as well as many other notable
security conferences, including RSA, ShmooCon, DerbyCon, BSides, and PacSec/CanSec. Most
of our team hold one or more advanced degrees in Computer Science or engineering, as well
as many other industry certifications and designations. Atredis team members have authored
several books, including The Android Hacker’s Handbook, the iOS Hacker’s Handbook, Wicked
Cool Shell Scripts, Gray Hat C#, and Black Hat Go.

While the Atredis client base is strictly confidential, and engagements often operate under
stringent nondisclosure agreements, Atredis has delivered notable public security research on
improving the security of Google, Motorola, Microsoft, Samsung and HTC products, and were
the first security research firm to be named in Qualcomm’s Product Security Hall of Fame.
Atredis has received four research grants from the Defense Advanced Research Project
Agency and has identified entirely new classes of vulnerabilities in hardware, software, and
the infrastructure of the World Wide Web.

In 2015, we expanded our services portfolio to include a wide range of advanced risk and
security program management consulting, expanding our services reach to extend from the
technical trenches into the boardroom. The Atredis Risk team has extensive experience
building mature security programs, performing risk and readiness assessments, and serving
as trusted partners to our clients to ensure the right people are making informed decisions
about risk and risk management.  

